
World Transactions on Engineering and Technology Education 2002 UICEE
Vol.1, No.2, 2002

 177

INTRODUCTION

Despite the explosion of research in the field of software
engineering, the pedagogy of software testing has received
relatively little attention. This article defines an approach for
generating software test plans intended for use by students in
programming and software engineering courses. The primary
goal is to provide an approach that helps to convey to students
the need for rigour in testing, and how this rigour can help to
make their test plans more complete.

There is no limit on the number and type of possible defects in
software. This uncertainty explains the impracticality of testing
for all possible bugs in a piece of software. Various techniques
have been developed for testing software. Software testing texts
(eg [1-5]), software engineering texts (eg [6][7]) and survey
papers (eg [8-11]) discuss a variety of techniques. Some
techniques are based on the execution of all branches and
controls within a program [6][12]. Others are based on the
execution of all program segments [12]. Others focus on the
testing of boundary conditions [6].

To address the testing of specific features used in object-
oriented constructs (eg testing inheritance, polymorphism,
dynamic binding and interaction between classes), several
testing techniques are proposed in the literature (eg [13-19]).

Various techniques utilise different criteria for software testing
and no single technique provides coverage of all possible types
of errors. Different existing techniques offer distinct advantages
and disadvantages. For example, the path-analysis based
techniques may encounter an infinite number of paths or
may not detect all paths. Some techniques are very complex
to apply and require considerable skill on the part of the
software tester. Moreover, many testing techniques are labour-
intensive.

From the standpoint of teaching software testing to university
students, such an unorganised collection of separate techniques
can be difficult to use. While one can cover a disparate set of
topics during lectures, assigning work for students can be
greatly facilitated by having a testing approach that is:

• Usable by hand so that the steps involved are simple

enough to apply with a reasonable amount of time and
effort.

• Organised as a list of guidelines that can be applied in
order, unlike most of the existing approaches in the
literature. The hope is that this will help to increase the
ease with which students can apply the approach.

• Quite obvious as to how the technique is to be applied in
virtually all cases. The amount of complex decision-
making should be minimised.

Teaching the existence and purpose of the different testing
approaches is important, but difficulties arise when students are
assigned the task of producing a test plan for a given program
in a short period of time. Trying to test their software with a
disparate set of techniques as covered in class lectures becomes
cumbersome. It can be difficult to decide which techniques
should be used and how they should be applied. There is a need
for a simple approach that can be applied in most situations.

This article discusses an approach that can be used to aid in
teaching how to generate software test plans. In this context, it
is not necessary to provide a technique to detect all kinds of
bugs. For teaching purposes, it is sufficient to have an approach
that helps students learn the process of testing, including the
importance of rigour in testing as opposed to an ad hoc
approach.

The remainder of the article is organised as follows. The
proposed test plan generation approach is first described using

A teaching approach for software testing

Andrew McAllister† & Sudip Misra‡

University of New Brunswick, Fredericton, Canada†
Carleton University, Ottawa, Canada‡

ABSTRACT: Teaching students how to test software is complicated by the absence of a simple, integrated approach for generating
test plans. No single testing technique fulfils these needs and teaching only a collection of disparate techniques makes it difficult to
assign work for students. This article provides an integrated approach for test plan generation that can be used by students in
programming and software engineering courses. The approach provides simple guidelines that prompt the discovery of sets of test
cases that are typically more complete than students produce on an ad hoc basis. A technique is introduced that ensures all program
statements are executed during testing and that loops are tested in a rigorous manner. Experience shows that this technique tends to
be simpler to use than existing techniques that identify independent paths through programs. All of the guidelines presented in this
article can be applied without automated tools. The primary strength of the approach is in demonstrating to students how rigorous
generation of test plans can identify test cases that might otherwise not occur to the tester, and how multiple techniques can be
combined to complement one another.

 178

illustrative examples at each step. This is followed by an
evaluation of the proposed approach and the authors’
experience in using it. The final section provides conclusions
and directions for future research.

THE TEACHING APPROACH

As part of the authors’ software engineering courses, the topic
of software testing is introduced to students by providing an
overview of fundamental testing concepts. The topics covered
are similar to those described in a variety of software
engineering textbooks, eg [6][7]. These topics include:

• The necessity of testing.
• Testing objectives.
• The relationship of testing to other software quality

assurance activities, such as code reviews, quality metrics,
project standards, etc.

• Testing in the software lifecycle and types of testing (unit,
integration, functional, acceptance).

• Testing activities (plan, execute test cases, evaluate
results, debug/fix, measure).

• Typical testing environments and tools; drivers and stubs.
• Categories of testing techniques: black box testing (based

on functional specifications) versus white box testing
(based on knowledge of the source code), etc.

• Management of testing activities. In particular, recognition
of the need to allocate sufficient time in project plans for
all testing activities.

This concept overview sets the stage for what the authors
consider to be the critical question that students should address,
namely: when faced with the task of testing a particular
software (sub) system, how should one proceed? In class
discussion, students are invariably successful in identifying test
case planning as one of the most potentially problematic tasks.
If one were able to produce magically a high-quality set of test
cases for a given program, then running the test cases and
determining which cases identify problems in the code is
conceptually straightforward by comparison. Debugging is also
problematic, of course, but students improve their skill in this
task by completing programming assignments in a variety of
courses within the computer science curriculum. Therefore, the
focus of teaching how to test (and the primary contribution of
this article) is in providing students with practical guidelines
they can use to identify test cases.

The authors’ approach is based on the following insights:

• There is a need to teach students that software should be

tested as exhaustively as possible, while completing the
task within reasonable time limits. However, this need
does not imply that students should be required to generate
exhaustive sets of test cases when completing course
assignments. Once students learn to apply a quality
technique, repeating this technique to generate large
numbers of test cases tends to induce boredom rather than
additional learning. For course assignments, this issue can
be handled by requiring students to either (a) test
exhaustively only a modest portion of their code, or (b)
produce a modest quantity of test cases, providing practice
with each applicable technique (as discussed below).

• Exhaustive coverage of all published software testing
techniques is impractical and unnecessary. Students
can learn the need for rigour in testing by applying a

relatively small set of carefully selected, complementary
techniques.

• Automated tools are available to aid in generating test
cases. However, manual test case generation is still
commonly performed in many software development
projects. In addition, not all education programmes have
access to such tools. The experiences of some educators
show that automation of test plan generation is of limited
use since it is unreasonably time consuming to automate
and involves difficulties not encountered with manual
testing [17]. Manual application of testing techniques can
force students to develop more insight into how the
techniques work than might be necessary to run an
automated tool. For these reasons, it is required that
students learn to generate test cases manually.

Fundamentals of the Testing Approach

The following fundamentals form the basis for the proposed
approach to software testing:

Fundamental #1 relates to testing every identifiable part of the
system at least once. This concept applies both in the context of
black box testing (eg test every screen, every input field) as
well as white box testing (eg execute every line of code at least
once, test every loop condition). This does not imply that the
program should be tested in every conceivable way in which it
could be used, which is impossible for the vast majority of
systems. Students are provided with checklists of guidelines
they can use to identify candidate system components for
testing.

Fundamental #2 is to push the system hard; try to break it.
Many of the guidelines included in the approach are derived
from the concept of boundary testing, which is based on the
theory that a significant percentage of errors occur in extreme
situations (eg using largest/smallest possible values,
largest/smallest quantity of data, largest/smallest possible
differences between values, etc).

Fundamental #3 covers the use of several techniques to
generate test cases. Any redundant test cases that result should
be eliminated. Using the black box approach, a tester might
note that a particular report allows several lines of output and
may devise a test case to do so. Later, when examining the code
that produces this report, the tester might devise a test case to
run through a loop several times (thus producing several lines
of output). The two test cases involve input that is equivalent
(for testing purposes) and produce equivalent output, ie they
test the same functionality. One should be eliminated from the
test plan. This does not represent wasted effort. Different
techniques identify different sets of test cases. The fact that
these sets typically overlap is natural and is less important than
the more complete coverage that results from using multiple
techniques.

Fundamental #4 relates to documenting all test cases in a test
plan. The end result of test case generation is a document that
defines all of the test cases. Simply running the test cases
without first documenting them is unacceptable. After finding
and fixing errors, the entire set of test cases should be executed
again. (This process is repeated until the entire test plan can be
executed with no errors. Repeating only the test cases that fail
is risky, since new errors are often introduced when fixing
bugs.) Repeated execution is impossible if the test cases are not

 179

documented. In addition, the test plan becomes part of the
documentation delivered with the completed system.

A table format is utilised to document test cases: one test case
per row, with the following five columns:

1. Test case number: Test cases are numbered consecutively

in the table, starting with 1.
2. Purpose: What aspect of the program’s behaviour is this

test case intended to exercise? In some cases this
information might be obvious by examining the input
values (column 3), but this is not always true.

3. Input: What input values are to be used when executing
this test case? This can include any type of input allowed
by the program, such as mouse clicks, audio input, scanned
input, specific data files to be used, etc.

4. Expected Result: Based on the program’s specification,
how should the system respond to the input? (If the system
responds otherwise, this represents an error.)

5. Observed Result: Did the system behave as expected or
was an error detected? This column is left blank during test
case generation; it is used only during the execution of test
cases. To speed up test case execution, each cell in this
column can contain check boxes for As Expected, Error
and Fixed. Since this column is completed each time the
test plan is executed, a separate copy of the plan can be
printed for each execution. (An alternative is to have
multiple Observed Result columns in the table, one for
each execution of the test plan.)

A critical concept in completing such a table is understanding
the nature of the information that should be included in the
Input and Expected Result columns. Input should be defined
using specific values rather than general classes of values. For
example, if a numeric value must be entered into a field as part
of the execution of a test case, it is insufficient to specify that
a negative value should be entered. Instead, a specific negative
value must be selected by the test planner and included in the
Input column, for example -5. Without such specificity, the test
plan is not repeatable.

Similarly, Expected Result entries should be as specific as
possible. For example, rather than simply saying that an
error message should appear, the test plan should specify
exactly what message should appear. A common student
mistake is to enter a phrase such as The operation should
complete properly in the Expected Result column, without
specifying what constitutes correct completion (a more specific
result might be stated as, for example: A customer record is
added to the database and the user is returned to the main
menu.)

The Approach Part I: Black Box Testing

In the black box approach, test cases are generated based on a
functional specification of the software. That is, assuming a
specification is available that defines how the software should
behave, test cases are generated to determine whether the
software’s behaviour is consistent with the specification. The
following guidelines are consistent with the fundamentals
described above and provide students with checklists they can
use to think of possible use cases.

For every user operation defined by the specification, the
following should be used to identify test cases based on system

behaviour (Note: this becomes For every use case for object-
oriented development):

• Execute every operation/scenario identified in the

specification.
• Include typical and exceptional scenarios: all types of

exceptions that can be considered, even those not
documented in the specification. NOTE: Students will
inevitably miss some types of exceptions at this point, but
at least this guideline gets them thinking in the correct
direction. Other testing guidelines in subsequent steps
prompt students to think of further exceptions).

• When documenting a test case for an exception, it is
possible that the desired system behaviour might not be
documented in the specification. For example, if a user
enters no input for a particular prompt, it might be
reasonable for the system to either (a) inform the user that
input is required and then cancel the operation, or (b) keep
displaying the prompt until the user either clicks the
Cancel button or enters some input. If the specification
simply states something like Input is mandatory for this
prompt then (on a real project) the tester must consult with
someone in authority (eg the system architect) to
determine how to fill out the Expected Result column for
this test case. For course assignments, it is advised that
students note all such cases, make a choice of desired
behaviour on their own and state any assumptions.

In order to identify test cases based on system input, the
following should be undertaken to test the usage/execution of
every user interface component:

• Pop up every screen/window and dialogue box, including

all error dialogues. The exception is that some error
dialogues might not be testable since they are designed to
appear only if the software is faulty.

• Click on every menu item and button (and complete the
resultant operation). Note: By this point in the process,
students will undoubtedly start generating use cases that
are redundant with those based on system behaviour. This
is by design and redundant test cases are simply omitted
from the test plan).

• Test every setting for all check boxes and radio buttons.
(This means more than just clicking to toggle each one on
and off). For example, for a given check box, click it on
and execute whatever operation depends on the setting of
this check box. Ensure that the on setting took effect as it
should. Then click the check box off and execute the
operation again to ensure that the appropriate behaviour
occurs. Testing the settings of multiple check boxes, radio
buttons, etc, with a single test case is acceptable.

• Select the first and last selections, as well as one near the
middle, for each drop-down selection list. If such a list has
variable content, then this should be tested with no items,
one item, a few items and the maximum number of items.
Test that each list defaults to the appropriate selection.

• For each field in which a user can type a value, enter:

- No value.
- Minimum allowable, maximum and medium values.

For example, if a field allows entry of a number
between 1 and 100, define a test case for 1, another for
100 and a third test case for 50.

- Illegal values (eg out of range, or alphanumeric where
numeric only is required).

 180

- Varying quantity of values:
- The minimum allowable quantity (and 1 less if

possible).
- The maximum allowable quantity (fill the field). Also

attempt to overfill the field).
- A quantity somewhere in the middle.

• Test all mouse click, resize, drag/drop, etc, operations.
• Test alternative inputs:

- Shortcuts to invoke operations (eg Ctrl+C for Copy).
- Keyboard alternatives to mouse operations (eg Enter

instead of clicking OK, tab to move from one GUI
field to another).

• Test (the full range of) any other forms of input allowed:

- Data files.
- Real-time data streams.
- Voice, etc.

To identifying test cases based on system output, the following
should be undertaken. The functional specification should
define the range of variability that is required/acceptable for all
required system outputs. Attempts should be made to produce
each type of output, pushing the bounds of these ranges as
follows:

• Produce each report with:

- A null/empty/minimum amount of data.
- A moderate quantity of data, then a maximum/large

quantity of data.
- Invalid results (may not be possible).
- Small, medium and large values.

• Produce the full range of screen displays, sounds, etc.
• Expected results can include checking the contents of any

data files created during test case execution.

The Approach Part II: White Box Testing

By definition, black box testing focuses on the user-perceivable
aspects of a system; namely: system input, output and
behaviour. On the other hand, white box testing is based on
how the system is constructed, which includes using knowledge
of the program source code. The guidelines suggested in this
section are designed so that students focus somewhat on what
comes between system input and output; in other words, on the
program statements that execute the operations and on the
variables and data structures that store values.

The following describes identification of test cases based on
Boolean conditions. For every condition that compares two
values a and b, test cases can be defined where:

• a = b.
• a < b.
• a > b.
• a and b are almost equal.
• a and b are vastly different.

It should be noted that when a condition appears in the middle
of some processing operation, there is a need to work out what

system inputs will result in the desired values of a and b at this
point in the process.

With regard to the identification of test cases based on data
storage (for selected variables that store data values), attempts
should be made to assign:

• Minimum, medium and maximum values.
• Both typical and unusual values (eg null string).
• Invalid values. Note: Students must use some judgement

here so that the number of test cases does not become
overly large. It is suggested that focus is placed on
variables that store significant intermediate results and the
results of significant calculations).

For each data structure (eg array, list, tree, etc) attempts should
seek to create:

• Null content.
• Minimum allowable content.
• Structure of typical size or shape.
• Extreme or odd shapes (eg a one-sided binary tree).
• Invalid structure (eg a root-less tree).
• Very large structure (this is important for testing memory

capacity).

The following should be considered when identifying test cases
based on control flow and loops. An important goal is to ensure
that every statement in the source code is executed at least once
during testing (it is assumed that every statement in the
program to be tested can be executed; modern compilers tend
to complain about unreachable sections of code.) Basic path-
testing techniques (eg [6]) accomplish this goal but can be
complex to apply. A simpler technique is proposed that
provides the additional benefit of testing loop execution.

The flow of execution through the statements of a program is
controlled by if and loop conditions. During the execution of all
test cases taken together, when each condition is evaluated to
true at least once, and evaluates to be false at least once, then
every possible direction is taken from each decision point in the
program and every statement must be executed at least once.
To ensure that this happens, tables of the form shown in Tables
1 and 2 can be used. The conditions in these tables are based on
the Java code example in Figure 1, the desired behaviour of
which is described by the specification in Figure 2.

Table 1: Ensuring that each if condition evaluates to both true
and false.

Test case where
condition evaluates to be: If condition #

True False
1 - (grade >= 85.0) 1 1
2 - (grade <= 100.0) 1 2
3 - (grade >= 85.0) &&
 (grade <= 100.0)

1 1

4 - (grade >= 70.0) 1 1
5 - (grade >= 55.0) 1 3
6 - (count > 0) 1 4

Each if condition is identified in a separate row of Table 1. The
simplest way to do this seems to be to scan through the source
code and number the conditions as they are encountered.

 181

Students typically print their source code and number the
conditions by writing on the printed program. In the sample
Java source code in Figure 1, comments are used to denote
condition numbers. Also, for the sake of clarity, the conditions
themselves are included in the leftmost column of Table 1.
Only the condition numbers are normally required in this
column.

Table 2: Ensuring that each loop is executed with a varying
number of iterations.

Test case number where the condition
terminates the loop after this many
iterations

Loop condition #

zero one multiple maximum
1 - (grade >= 0.0) 4 2 1 n/a

System.out.println("Enter one numeric grade per line "
 + "(end with negative number):");
double grade = console.readDouble();
double total = 0.0;
int count = 1;
String letterGrade = "";
while (grade >= 0.0) { // Loop condition #1
 count++;
 total += grade;
 if ((grade >= 85.0) // If condition #1
 && (grade <= 100.0)) // If condition #2
 letterGrade = "A"; // Entire compound condition is #3
 else if (grade >= 70.0) // If condition #4
 letterGrade = "B";
 else if (grade >= 55.0) // If condition #5
 letterGrade = "C";
 else
 letterGrade = "F";
 System.out.println("Letter grade: " + letterGrade);
 // Get next grade
 grade = console.readDouble();
}
if (count > 0) // If condition #6
 System.out.println("Average: " + (total/(double)count));

Figure 1: Sample Java source code.

The program should accept a series of numeric grades (between
0.0 and 100.0) entered by the user. The user enters a negative
sentinel value to indicate the end of the input. Invalid grades
are to be rejected by the program. After each valid grade is
entered, the program must print the corresponding letter grade,
according to the following conversion:
 85 to 100 (inclusive): A
 At least 70, but less than 85: B
 At least 55, but less than 70: C
 Less than 55: F
The program must also count and sum the numeric grades, then
calculate and display a numeric average after the sentinel value
is entered. The sentinel value does not count as a grade; in
other words, it does not affect the calculation of the average.

Figure 2: Program specification.

For compound conditions (ie those involving and, or) each
sub-condition should be numbered separately (and placed in

its own row in Table 1), as well as the compound condition
as a whole. For example, conditions 1 and 2 in Table 1 are
subparts of condition 3.

Strictly speaking, to ensure that all statements in a program are
executed at least once, only the compound condition as a whole
is required in Table 1, since the condition as a whole
determines the flow of control through the program.

However, an and condition typically has more than one way of
becoming false, and an or condition can be true for more than
one reason. For example, condition 3 in Table 1 can be false
for two reasons, namely: (a) a grade is below 85, or (b) a grade
is above 100. Including the sub-conditions in separate rows of
the table forces each of these cases to be tested. In other words,
this technique goes beyond simply ensuring execution of all
program statements.

Loop conditions are also numbered. Each one occupies a row in
a separate table, as shown in Table 2. It does not matter
whether if and loop conditions are numbered separately or as a
single series. The only issue is to identify each condition in
some unambiguous manner.

Each cell in Tables 1 and 2 is filled with a single test
case number (or n/a meaning not applicable). If students
apply this technique late in the process of generating test
cases (that is, if the other guidelines listed previously are
used first), then it is possible that the tables can be partially or
wholly filled based on test cases that already exist. However,
for this example, it is assumed that no test cases exist
upon starting. If this is so, then the choice of test case 1 is
relatively unimportant; it is suggested that students define
inputs for what they consider to be a typical execution of the
program.

Test case 1 in Table 3 is such a case. It involves the entry of a
few typical grades, followed by a valid sentinel value. Once this
test case is defined (or when an existing test case is being
considered), the tester must determine which cells in Tables 1
and 2 are satisfied by this test case. In this example, test case 1
satisfies ten cells in Tables 1 and 2. For instance, if conditions
1, 2, 3 and 6 are true immediately following entry of the value
90; if condition 4 is true and if conditions 1 and 3 are false after
entry of 75, and so on. The while loop is executed more than
once during this test case, so test case 1 is entered in the
multiple column in Table 2.

The maximum column in Table 2 is used when there is some
upper boundary on the number of possible or allowable
iterations for a given loop. This is not the case in this example,
so n/a is entered.

Additional test cases can be considered for any cells that
remain blank in Tables 1 and 2. For example, a value greater
than 100 must be entered so that if condition 2 will evaluate to
false.

Test case 2 is then added to Table 3 to accomplish this and the
false cell for if condition 2 in Table 1 is filled in accordingly. In
addition, since test case 2 involves entry of only a single grade
(other than the sentinel), then this test case also accomplishes
the goal of executing the while loop exactly once. Therefore,
test case 2 is entered in the one column of Table 2 for loop
condition 1.

 182

Table 3: Test cases generated for the Java code in Figure 1.

Test Case # Purpose Input Expected Result Observed Result
1 A typical program execution

- A series of different grades
90, 75, 60, -1 Letter grade: A

Letter grade: B
Letter grade: C
Average: 75.0

As expected
Error found
Error fixed

2 An invalid grade is entered. 101, -1 Messages:
Invalid grade.
No grades entered.
(assumption)

As expected
Error found
Error fixed

3 A failing grade is entered. 30, -1 Letter grade: F
Average: 30.0

As expected
Error found
Error fixed

4 Sentinel value is entered
immediately, with no valid
grades

-100 Message:
No grades entered.
(assumption)

As expected
Error found
Error fixed

The false cell for if condition 5 in Table 1 prompts the
definition of test case 3 in Table 3 (entry of a grade less than
55). This test case is similar to test case 2 in that both result in
exactly one iteration of the loop. However, there is no need to
add test case 3 to the one column in Table 2. In general, once a
given test case satisfies a specific cell in Tables 1 or 2, there is
no need to make note of any other test cases that happen to do
the same.

To complete the example, the zero cell for loop condition 1
leads us to define test case 4, in which no grades are entered
prior to the sentinel. This is the case for which if condition 6 is
included in the program: to avoid division by zero when no
grades are entered. A student completing Table 1 might
reasonably enter test case 4 in the false cell for if condition 6
(as has been done here), expecting this to be so. The execution
of test case 4 will then result in an error being found: the count
is improperly initialised to 1 instead of 0 (zero). This error will
also be detected by test case 1 since an incorrect average will
be calculated as a result.

An alternative and equally likely scenario for the completion of
Table 1 is as follows. In attempting to predict the expected
result of test case 4, the student might notice the improper
initialisation of the count variable. Finding errors like this
during test case generation is not an uncommon event, and two
actions are possible. It is recommended that the student should
fix the error immediately and then continue with testing (the
number 4 remains in the false cell for if condition 6). This is
usually simple to do in a learning environment since the
programmer and the tester are typically the same person.

Alternatively, n/a can be entered in the false cell for if
condition 6, since for this version of the program, if condition 6
cannot become false because count starts at 1 and can never
decrease. After test case execution, all known errors are fixed
before updating the test cases (including replacement of this n/a
entry with test case 4) and testing again. This alternative
approach might make more sense in a commercial setting if
batches of known errors are passed to programmers for fixing
between rounds of testing.

An important point to make regarding the use of this technique
(and for white box testing in general) is that even though test
cases are identified based on the program source code, the
expected results are determined based on the program

specification. The expected results documented in Table 3
illustrate a common problem in both classroom and commercial
settings: expected results can be difficult to define when a
specification is incomplete.

As in this example, one of the most common areas for this type
of difficulty is in error handling. In this case the specification in
Figure 2 states that invalid grades should be rejected, but makes
no mention of how this should be accomplished. When
completing the Expected Result cell for test case 2 in Table 3,
the fictitious student decided (quite reasonably) that the
program should display a message to the effect that 101 is an
invalid grade. This is an assumption and is noted as such. Test
cases 2 and 4 also involve the assumption that a message
should be displayed when an average cannot be calculated
because no grades have been entered. Even if the tester wrote
the program, it is not uncommon for the testing exercise to
force students to reconsider lapses or invalid assumptions made
during programming. In this way, effective teaching of software
testing can also improve programming skills.

The execution of such test cases shows that the example
program does not display the messages noted in test cases 2 and
4. Moreover, test case 2 shows that invalid grades are included
in the calculation of the average and that an average is
calculated and displayed even when no valid grades are
entered.

To further illustrate the use of this technique, consider a loop
that searches through the elements of an array and is coded as
follows: while ((i < arraySize) && notFound))

As with an if condition, the sub-conditions are listed separately
from the compound condition in Table 4. Note that a Boolean
variable is treated the same as any other condition.

Table 4: Handling a compound loop condition.

Test case number where the condition
terminates the loop after this many
iterations

Loop condition #

zero one multiple maximum
1 - (i < arraySize) 1 2 3 3
2 – notFound n/a 4 6 7
3 - (i < arraySize)
&& notFound

1 2 3 3

 183

The following list describes seven test cases that can be used to
populate the cells in Table 4:

1. The arraySize is zero.
2. The search item is not present in an array with one

element.
3. The search item is not present in an array with multiple

elements.
4. The search item is the only element in the array.
5. The search item is located in the first element of an array

with multiple elements.
6. The search item is located in a middle element of an array

with multiple elements.
7. The search item is located in the last element of an array

with multiple elements.

Condition 1 terminates the loop when the entire array has been
searched, which happens when the search item is not found.
Therefore, the cells for condition 1 are satisfied by defining test
cases where a search item is not found in arrays of various
sizes.

Condition 2 terminates the loop when the search item is found.
This cannot take place in an empty array, so the zero cell does
not apply to condition 2. Condition 2 terminates the loop after a
single iteration when the search item is found in the first
element of an array. This can happen either in an array of size
one or in an array with multiple elements (test cases 4 and 5).

Strictly speaking, the proposed testing technique requires that
only one of these two test cases be included (to populate the
one cell for condition 2) but if both test cases occur to the
tester, then it makes sense to include both in the test
plan. Either of the two test case numbers can be entered in
Table 4.

The maximum possible number of loop iterations is achieved
when an entire array (with multiple elements) is searched,
which is true for test cases 3 and 7.

The entries in Table 4 for condition 3 (the compound
condition) illustrate the value of listing sub-conditions
separately. The compound condition can be made to terminate
the loop a varying number of times using only test cases 1 to 3,
without ever finding a search item. Separate treatment of sub-
conditions prompts the tester to think of a more complete set of
test cases.

Figure 3 illustrates a final point to be made about this
technique. The code in Figure 3 includes two loop conditions
and one if condition. However, none of these three conditions
can be affected by program input. This code executes in exactly
the same manner every time the program is run, and can be
tested adequately by any single test case that executes this
portion of the program (which is guaranteed to happen, since
the technique ensures that all program statements are executed).
This type of invariant behaviour is common, for example, in
loops that initialise arrays and other data structures. Such
conditions are omitted when numbering conditions for
inclusion in Tables 1 and 2.

EVALUATION OF THE APPROACH

The authors’ literature survey has revealed no other work
that is specifically oriented towards tackling improvements in

teaching software testing to students. The approach presented
in this article represents two innovations in software testing,
namely:

• The approach integrates concepts borrowed from existing

disparate techniques so that students have a single
reference to guide their work.

• A new table-based technique is presented that helps in
identifying test cases that exercise if and loop conditions in
a rigorous manner.

// Display a checkerboard pattern of alternating
// white and black squares
for (int row = 1; row <= 8; row++)
{ for (int column = 1; column <= 8; column++)
 { if ((row%2)==(column%2))
 // Display a white square
 else
 // Display a black square
 }
}

Figure 3: Conditions that are independent of program input.

The approach is applicable to virtually any programming
language and is not dependent on the availability of automated
testing tools or environments.

A wide variety of published techniques address program
characteristics not tested using this approach. For instance, one
current research issue is the generation of test cases for
programs that involve dynamic binding and polymorphic
features [18]. In such situations, the object that will process a
message is not pre-determined but is decided dynamically
during execution. The actual flow of control is not determined
statically beforehand but is decided dynamically at run-time,
and therefore cannot be predicted [20]. This limits the
applicability of our technique, a part of which involves static
examination of source code to determine flow of control.

The authors consider this not to be a large problem for the
following reasons:

• The authors’ approach is intended for use in a learning

environment where such types of programs can be
controlled.

• The approach is not intended to provide comprehensive
testing for all types of programs. Rather, it is designed to
demonstrate to students the need for comprehensive
testing, as well as to provide examples of techniques that
can help to address this need.

• Even programs that include problematic characteristics
can be tested with this approach. Some aspects of the
programs may be less rigorously tested than others, but
students and instructors can add new techniques and
guidelines to the approach in order to fit the needs of
specific courses.

The approach described in this paper has been taught for
several years in second- and third-year software engineering
courses as part of the undergraduate Computer Science
curriculum at the University of New Brunswick, Fredericton,
Canada. This experience has been used to evolve the approach
to its current state. Students report consistently that the

 184

approach is easy to apply and that the resultant test cases are
simple to use (in guiding test case execution).

The most gratifying feedback comes from students with work
experience, which includes both mature students and those in
the University’s computer science co-op programme (students
receive academic credit for four- and eight-month industry
work terms). Several such students have discussed their
involvement in commercial projects where software developers
have been left to their own devices to perform testing as they
see fit, and where test cases have been generated on an ad hoc,
black box basis only, simply using as many test cases as they
can think of. It should be noted that in the experience of the
authors, this situation is all too common, even in organisations
that specialise in software development.

Even though the approach in this paper was not designed for
use in commercial settings, several students have reported that
it is an improvement on the testing practices they have used in
commercial projects. Furthermore, they believe it will aid them
in subsequent projects.

CONCLUSIONS AND FUTURE WORK

The authors’ experience indicates that the proposed test plan
generation approach is easier to teach than the medley of
existing techniques typically presented by software engineering
textbooks. Perhaps more importantly, the proposed approach
provides a usable reference that eases significantly the task of
developing software testing assignments, while increasing the
degree of rigour that students can use in completing these
assignments.

There are several potential areas where further research is
possible. First, although the approach has been designed for
pedagogical purposes, one could very well examine its
effectiveness by applying it within a commercial context. One
could study if there would be major changes in ideas the
students would have to undergo in the transition from school to
work. A second possibility is to attempt to measure the
effectiveness of the test cases generated using the approach. Do
students identify more bugs in their software using this
approach as opposed to unguided, ad hoc testing efforts? It
might also be possible to design other testing approaches for
teaching purposes. Experience may show that it is possible to
further simplify the steps of the approach, or to test more
aspects of the software (ie to incorporate additional testing
techniques). Finally, one can investigate ways to accomplish
other testing activities in a teaching environment, such as test
case execution and evaluation, debugging and error fixing, as
well as error rate evaluation.

REFERENCES

1. Beizer, B., Black Box Testing: Techniques for Functional

Testing of Software and Systems. New York: Wiley (1995).

2. Beizer, B., Software Testing Techniques. New York: Van
Nostrand Reinhold (1990).

3. DeMillo, R.A., Software Testing and Evaluation.
Redwood City: Benjamin/Cummings Publishing Co.
(1987).

4. Hetzel, B., The Complete Guide to Software Testing.
Massachusetts: QED Information Sciences (1988).

5. Marick, B. The Craft of Software Testing. Englewood
Cliffs: Prentice Hall (1995).

6. Pressman, R.S., Software Engineering: A Practitioner’s
Approach (5th edn). New York: McGraw-Hill
(2001).

7. Bruegge, B. and Dutoit, A.H., Object-Oriented Software
Engineering: Conquering Complex and Changing
Systems. Englewood Cliffs: Prentice Hall (2000).

8. Binder, R.V., Testing object-oriented software: a survey. J.
of Software Testing, Verification and Reliability, 6, 3-4,
125-252 (1996).

9. Offutt, A.J., An experimental evaluation of data flow and
mutation testing. Software - Practice and Experience, 26,
2, 165-176 (1996).

10. Schach, S.R., Testing principles and practice. ACM
Computing Reviews, 28, 1, 277-279 (1996).

11. Weyuker, E.J., Comparison of program testing strategies.
Proc. 4th Symp. on Software Testing, Analysis and
Verification. Victoria, Canada, 1-10 (1991).

12. Abbott, J., Software Testing Techniques. Manchester: NCC
Publications (1986).

13. Cheatham, T.J. and Mellinger, L., Testing object-oriented
software systems. Proc. ACM Computer Science Conf.,
New York, USA, 161-165 (1990).

14. Dibachi, R., Techniques for testing java applications. Proc.
6th Inter. Conf. on Software Testing, Analysis and Review.
San Jose, USA, 481-494 (1997).

15. Fiedler, S.P., Object-oriented unit testing. Hewlett-
Packard J., 40, 2, 69-74 (1989).

16. Frankl, P., A Framework for Testing Object-oriented
Programs. Technical Report, Department of Electrical
Engineering and Computer Science, Polytechnic
University, New York (1989).

17. Hoffman, D.M. and Strooper, P.S., A case study in class
testing. Proc. CASCON ‘93, Toronto, Canada, 472-482
(1993).

18. Labiche, Y., Thevenod-Fosse, P., Waeselynck, H. and
Durand, M.H., Testing levels for object-oriented software.
Proc. 22nd IEEE Inter. Conf. on Software Engng. (ICSE).
Limerick, Ireland, 136-145 (2000).

19. Murphy, G.C., Townsend, P. and Wong, P.S., Experiences
with cluster and class testing. CACM, 37, 9, 39-47
(1994).

20. Graham, D., Testing o-o systems. Proc. Object Expo. and
Java Expo. London, England, UK, 309-318 (1996).

